Cargando…

Mechanical performance of experimental acrylic resins modified by nanoparticles after chemical and mechanical degradation

BACKGROUND: Different materials have been incorporated into the polymethylmethacrylate matrix to improve its performance. The aim of this study was to evaluate the degree of conversion (DC), the flexural strength (FS), the elasticity modulus (EM), and the effect of exposure to food-simulating liquid...

Descripción completa

Detalles Bibliográficos
Autores principales: Machado-Santos, Luciana, Silikas, Nicolaos, Baroudi, Kusai, Sinhoreti, Mario-Alexandre-Coelho, Brandt, William-Cunha, Liporoni, Priscila-Christiane-Suzy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medicina Oral S.L. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700787/
https://www.ncbi.nlm.nih.gov/pubmed/33282137
http://dx.doi.org/10.4317/jced.57265
Descripción
Sumario:BACKGROUND: Different materials have been incorporated into the polymethylmethacrylate matrix to improve its performance. The aim of this study was to evaluate the degree of conversion (DC), the flexural strength (FS), the elasticity modulus (EM), and the effect of exposure to food-simulating liquids prior to brushing simulation on the gloss loss (GL) of experimental acrylic resins modified by nanoparticles. MATERIAL AND METHODS: Three different types of nanoparticles; silicon oxide (SiO2), cerium oxide (CeO2) and titanium oxide (TiO2) were added to a poly (methylmethacrylate) matrix, in proportions of 0.5wt%, 1wt% and 3wt% each, forming nine experimental groups. The acrylic resin was also tested as a control group. DC was investigated using Fourier transform infrared spectroscopy (FTIR). A three-point bending test was used for FS and EM. GL after chemical degradation and simulated brushing was evaluated using a glossmeter. Data were submitted to one and two-way ANOVA followed by Duncan’s post hoc test (α=0.05). RESULTS: All nanoparticle-modified groups showed higher values of DC. Ce1% showed higher values of FS and EM. All other groups showed similar or lower physical-mechanical properties (FS, EM, GL). Regarding type and wt%, CeO2 and TiO2 groups had better performances and were similar to each other. CONCLUSIONS: Incorporating metal nanoparticles, especially CeO2, could improve the physical properties of the dental materials. Key words:Polymethylmetacrylate, degree of conversion, flexural strength, elasticity modulus, gloss loss.