Cargando…
Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1
Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identi...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700820/ https://www.ncbi.nlm.nih.gov/pubmed/33053337 http://dx.doi.org/10.1016/j.celrep.2020.108255 |
_version_ | 1783616363970953216 |
---|---|
author | McCauley, John P. Petroccione, Maurice A. D’Brant, Lianna Y. Todd, Gabrielle C. Affinnih, Nurat Wisnoski, Justin J. Zahid, Shergil Shree, Swasti Sousa, Alioscka A. De Guzman, Rose M. Migliore, Rosanna Brazhe, Alexey Leapman, Richard D. Khmaladze, Alexander Semyanov, Alexey Zuloaga, Damian G. Migliore, Michele Scimemi, Annalisa |
author_facet | McCauley, John P. Petroccione, Maurice A. D’Brant, Lianna Y. Todd, Gabrielle C. Affinnih, Nurat Wisnoski, Justin J. Zahid, Shergil Shree, Swasti Sousa, Alioscka A. De Guzman, Rose M. Migliore, Rosanna Brazhe, Alexey Leapman, Richard D. Khmaladze, Alexander Semyanov, Alexey Zuloaga, Damian G. Migliore, Michele Scimemi, Annalisa |
author_sort | McCauley, John P. |
collection | PubMed |
description | Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing. |
format | Online Article Text |
id | pubmed-7700820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77008202020-11-29 Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 McCauley, John P. Petroccione, Maurice A. D’Brant, Lianna Y. Todd, Gabrielle C. Affinnih, Nurat Wisnoski, Justin J. Zahid, Shergil Shree, Swasti Sousa, Alioscka A. De Guzman, Rose M. Migliore, Rosanna Brazhe, Alexey Leapman, Richard D. Khmaladze, Alexander Semyanov, Alexey Zuloaga, Damian G. Migliore, Michele Scimemi, Annalisa Cell Rep Article Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing. 2020-10-13 /pmc/articles/PMC7700820/ /pubmed/33053337 http://dx.doi.org/10.1016/j.celrep.2020.108255 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article McCauley, John P. Petroccione, Maurice A. D’Brant, Lianna Y. Todd, Gabrielle C. Affinnih, Nurat Wisnoski, Justin J. Zahid, Shergil Shree, Swasti Sousa, Alioscka A. De Guzman, Rose M. Migliore, Rosanna Brazhe, Alexey Leapman, Richard D. Khmaladze, Alexander Semyanov, Alexey Zuloaga, Damian G. Migliore, Michele Scimemi, Annalisa Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 |
title | Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 |
title_full | Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 |
title_fullStr | Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 |
title_full_unstemmed | Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 |
title_short | Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1 |
title_sort | circadian modulation of neurons and astrocytes controls synaptic plasticity in hippocampal area ca1 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700820/ https://www.ncbi.nlm.nih.gov/pubmed/33053337 http://dx.doi.org/10.1016/j.celrep.2020.108255 |
work_keys_str_mv | AT mccauleyjohnp circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT petroccionemauricea circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT dbrantliannay circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT toddgabriellec circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT affinnihnurat circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT wisnoskijustinj circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT zahidshergil circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT shreeswasti circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT sousaaliosckaa circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT deguzmanrosem circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT migliorerosanna circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT brazhealexey circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT leapmanrichardd circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT khmaladzealexander circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT semyanovalexey circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT zuloagadamiang circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT miglioremichele circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 AT scimemiannalisa circadianmodulationofneuronsandastrocytescontrolssynapticplasticityinhippocampalareaca1 |