Cargando…
Learning Generative State Space Models for Active Inference
In this paper we investigate the active inference framework as a means to enable autonomous behavior in artificial agents. Active inference is a theoretical framework underpinning the way organisms act and observe in the real world. In active inference, agents act in order to minimize their so calle...
Autores principales: | Çatal, Ozan, Wauthier, Samuel, De Boom, Cedric, Verbelen, Tim, Dhoedt, Bart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701292/ https://www.ncbi.nlm.nih.gov/pubmed/33304260 http://dx.doi.org/10.3389/fncom.2020.574372 |
Ejemplares similares
-
Model Reduction Through Progressive Latent Space Pruning in Deep Active Inference
por: Wauthier, Samuel T., et al.
Publicado: (2022) -
Active Vision for Robot Manipulators Using the Free Energy Principle
por: Van de Maele, Toon, et al.
Publicado: (2021) -
Embodied Object Representation Learning and Recognition
por: Van de Maele, Toon, et al.
Publicado: (2022) -
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
por: Mazzaglia, Pietro, et al.
Publicado: (2022) -
Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition
por: Safron, Adam, et al.
Publicado: (2022)