Cargando…

Accurate prediction of RNA 5-hydroxymethylcytosine modification by utilizing novel position-specific gapped k-mer descriptors

RNA modification is an essential step towards generation of new RNA structures. Such modification is potentially able to modify RNA function or its stability. Among different modifications, 5-Hydroxymethylcytosine (5hmC) modification of RNA exhibit significant potential for a series of biological pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Sajid, Hossain, Zahid, Uddin, Mahtab, Taherzadeh, Ghazaleh, Sharma, Alok, Shatabda, Swakkhar, Dehzangi, Abdollah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701324/
https://www.ncbi.nlm.nih.gov/pubmed/33304452
http://dx.doi.org/10.1016/j.csbj.2020.10.032
Descripción
Sumario:RNA modification is an essential step towards generation of new RNA structures. Such modification is potentially able to modify RNA function or its stability. Among different modifications, 5-Hydroxymethylcytosine (5hmC) modification of RNA exhibit significant potential for a series of biological processes. Understanding the distribution of 5hmC in RNA is essential to determine its biological functionality. Although conventional sequencing techniques allow broad identification of 5hmC, they are both time-consuming and resource-intensive. In this study, we propose a new computational tool called iRNA5hmC-PS to tackle this problem. To build iRNA5hmC-PS we extract a set of novel sequence-based features called Position-Specific Gapped k-mer (PSG k-mer) to obtain maximum sequential information. Our feature analysis shows that our proposed PSG k-mer features contain vital information for the identification of 5hmC sites. We also use a group-wise feature importance calculation strategy to select a small subset of features containing maximum discriminative information. Our experimental results demonstrate that iRNA5hmC-PS is able to enhance the prediction performance, dramatically. iRNA5hmC-PS achieves 78.3% prediction performance, which is 12.8% better than those reported in the previous studies. iRNA5hmC-PS is publicly available as an online tool at http://103.109.52.8:81/iRNA5hmC-PS. Its benchmark dataset, source codes, and documentation are available at https://github.com/zahid6454/iRNA5hmC-PS.