Cargando…
Pathological Cluster Identification by Unsupervised Analysis in 3,822 UK Biobank Cardiac MRIs
We perform unsupervised analysis of image-derived shape and motion features extracted from 3,822 cardiac Magnetic resonance imaging (MRIs) of the UK Biobank. First, with a feature extraction method previously published based on deep learning models, we extract from each case 9 feature values charact...
Autores principales: | Zheng, Qiao, Delingette, Hervé, Fung, Kenneth, Petersen, Steffen E., Ayache, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701336/ https://www.ncbi.nlm.nih.gov/pubmed/33313075 http://dx.doi.org/10.3389/fcvm.2020.539788 |
Ejemplares similares
-
COVID-19 and the UK Biobank—Opportunities and Challenges for Research and Collaboration With Other Large Population Studies
por: Khanji, Mohammed Y., et al.
Publicado: (2020) -
Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank
por: Cetin, Irem, et al.
Publicado: (2020) -
Women With Diabetes Are at Increased Relative Risk of Heart Failure Compared to Men: Insights From UK Biobank
por: Chadalavada, Sucharitha, et al.
Publicado: (2021) -
Associations of Meat and Fish Consumption With Conventional and Radiomics Cardiovascular Magnetic Resonance Phenotypes in the UK Biobank
por: Raisi-Estabragh, Zahra, et al.
Publicado: (2021) -
Simulating Longitudinal Brain MRIs with Known Volume Changes and Realistic Variations in Image Intensity
por: Khanal, Bishesh, et al.
Publicado: (2017)