Cargando…

Histamine receptor 1 is expressed in leukaemic cells and affects differentiation sensitivity

Despite the success of immunotherapy in several haematological neoplasms, the effectiveness in acute myeloid leukaemia (AML) is still controversial, partially due to the lack of knowledge regarding immune‐related processes in this disease and similar neoplasias. In this study, we analysed the role a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cornet‐Masana, Josep M., Banús‐Mulet, Antònia, Cuesta‐Casanovas, Laia, Carbó, José M., Guijarro, Francesca, Torrente, Miguel Ángel, Esteve, Jordi, Risueño, Ruth M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701509/
https://www.ncbi.nlm.nih.gov/pubmed/33080103
http://dx.doi.org/10.1111/jcmm.15930
Descripción
Sumario:Despite the success of immunotherapy in several haematological neoplasms, the effectiveness in acute myeloid leukaemia (AML) is still controversial, partially due to the lack of knowledge regarding immune‐related processes in this disease and similar neoplasias. In this study, we analysed the role and expression of histamine receptor 1 (HRH1) in haematological malignancies. Although the histamine receptor type 1 was widely expressed in healthy and malignant haematopoiesis, especially along the myeloid lineage, HRH1 lacked a relevant role in survival/proliferation and chemoresistance of AML cells, as analysed by HRH1 knockdown (KD) and pharmacological modulation. However, HRH1‐mediated signalling was critical for the activation of the differentiation process induced by several agents including all‐trans retinoic acid, establishing a role for HRH1 in myeloid differentiation. Pharmacological activation of Erk was able to partially restore differentiation capacity in HRH1 KD AML cells, suggesting that HRH1 signalling acts upstream MAPK‐Erk pathway. As an indirect consequence of our results, treatment‐related histamine release is not expected to confer a proliferative advantage in leukaemic cells.