Cargando…
Biological dose summation of external beam radiotherapy for the whole breast and image-guided high-dose-rate interstitial brachytherapy boost in early-stage breast cancer
PURPOSE: To develop an alternative method for summing biologically effective doses of external beam radiotherapy (EBRT) with interstitial high-dose-rate (HDR) brachytherapy (BT) boost in breast cancer. The total doses using EBRT boost were compared with BT boost using our method. MATERIAL AND METHOD...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701920/ https://www.ncbi.nlm.nih.gov/pubmed/33299435 http://dx.doi.org/10.5114/jcb.2020.100379 |
Sumario: | PURPOSE: To develop an alternative method for summing biologically effective doses of external beam radiotherapy (EBRT) with interstitial high-dose-rate (HDR) brachytherapy (BT) boost in breast cancer. The total doses using EBRT boost were compared with BT boost using our method. MATERIAL AND METHODS: Twenty-four EBRT plus interstitial HDR-BT plans were selected, and additional plans using EBRT boost were created. The prescribed dose was 2.67/40.05 Gy to whole breast and 4.75/14.25 Gy BT or 2.67/10.7 Gy EBRT to planning target volume (PTV) boost. EBRT and BT computed tomography (CT) were registered twice, including fitting the target volumes and using the lung, and the most exposed volume of critical organs in BT were identified on EBRT CT images. The minimal dose of these from EBRT was summed with their BT dose, and these EQD2 doses were compared using BT vs. EBRT boost. This method was compared with uniform dose conception (UDC). RESULTS: D(90) of PTV boost was significantly higher with BT than with EBRT boost: 67.1 Gy vs. 56.7 Gy, p = 0.0001. There was no significant difference in the dose of non-target and contralateral breast using BT and EBRT boost. D(1) to skin, lung, and D(0.1) to heart were 58.6 Gy vs. 66.7 Gy (p = 0.0025), 32.6 Gy vs. 50.6 Gy (p = 0.0002), and 52.2 Gy vs. 58.1 Gy (p = 0.0009), respectively, while D(0.1) to ribs was 44.3 Gy vs. 37.7 Gy (p = 0.0062). UDC overestimated D(1) (lung) by 54% (p = 0.0001) and D(1) (ribs) by 28% (p = 0.0003). CONCLUSIONS: Based on our biological dose summation method, the total dose of PTV in the breast is higher using BT boost than with EBRT. BT boost yields lower skin, lung, and heart doses, but higher dose to ribs. UDC overestimates lung and ribs doses. |
---|