Cargando…

A Functionally and Anatomically Bipartite Vocal Pattern Generator in the Rat Brain Stem

The mammalian vocal pattern generator is situated in the brainstem but its exact structure is debated. We mapped these circuits in rats by cooling and microstimulation. Local cooling disrupted call production above an anterior and a posterior brainstem position. Anterior cooling affected predominant...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartmann, Konstantin, Brecht, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702002/
https://www.ncbi.nlm.nih.gov/pubmed/33299974
http://dx.doi.org/10.1016/j.isci.2020.101804
Descripción
Sumario:The mammalian vocal pattern generator is situated in the brainstem but its exact structure is debated. We mapped these circuits in rats by cooling and microstimulation. Local cooling disrupted call production above an anterior and a posterior brainstem position. Anterior cooling affected predominantly high-frequency calls, whereas posterior cooling affected low-frequency calls. Electrical microstimulation of the anterior part led to modulated high-frequency calls, whereas microstimulation of the posterior part led to flat, low-frequency calls. At intermediate positions cooling did not affect calls and stimulation did not elicit calls. The anterior region corresponds to a subsection of the parvicellular reticular formation that we term the vocalization parvicellular reticular formation (VoPaRt). The posterior vocalization sites coincide with the nucleus retroambiguus (NRA). VoPaRt and NRA neurons were very small and the VoPaRt was highly myelinated, suggestive of high-speed processing. Our data suggest an anatomically and functionally bipartite vocal pattern generator.