Cargando…

The Valence Orbitals of the Alkaline‐Earth Atoms

Quantum chemical calculations of the alkaline‐earth oxides, imides and dihydrides of the alkaline‐earth atoms (Ae=Be, Mg, Ca, Sr, Ba) and the calcium cluster Ca(6)H(9)[N(SiMe(3))(2)](3)(pmdta)(3) (pmdta=N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine) have been carried out by using density functional t...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández, Israel, Holzmann, Nicole, Frenking, Gernot
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702052/
https://www.ncbi.nlm.nih.gov/pubmed/32666598
http://dx.doi.org/10.1002/chem.202002986
Descripción
Sumario:Quantum chemical calculations of the alkaline‐earth oxides, imides and dihydrides of the alkaline‐earth atoms (Ae=Be, Mg, Ca, Sr, Ba) and the calcium cluster Ca(6)H(9)[N(SiMe(3))(2)](3)(pmdta)(3) (pmdta=N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine) have been carried out by using density functional theory. Analysis of the electronic structures by charge and energy partitioning methods suggests that the valence orbitals of the lighter atoms Be and Mg are the (n)s and (n)p orbitals. In contrast, the valence orbitals of the heavier atoms Ca, Sr and Ba comprise the (n)s and (n−1)d orbitals. The alkaline‐earth metals Be and Mg build covalent bonds like typical main‐group elements, whereas Ca, Sr and Ba covalently bind like transition metals. The results not only shed new light on the covalent bonds of the heavier alkaline‐earth metals, but are also very important for understanding and designing experimental studies.