Cargando…
The Acer truncatum genome provides insights into nervonic acid biosynthesis
Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high‐quality draft genome asse...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702125/ https://www.ncbi.nlm.nih.gov/pubmed/32772482 http://dx.doi.org/10.1111/tpj.14954 |
_version_ | 1783616552008941568 |
---|---|
author | Ma, Qiuyue Sun, Tianlin Li, Shushun Wen, Jing Zhu, Lu Yin, Tongming Yan, Kunyuan Xu, Xiao Li, Shuxian Mao, Jianfeng Wang, Ya‐nan Jin, Shuangxia Zhao, Xing Li, Qianzhong |
author_facet | Ma, Qiuyue Sun, Tianlin Li, Shushun Wen, Jing Zhu, Lu Yin, Tongming Yan, Kunyuan Xu, Xiao Li, Shuxian Mao, Jianfeng Wang, Ya‐nan Jin, Shuangxia Zhao, Xing Li, Qianzhong |
author_sort | Ma, Qiuyue |
collection | PubMed |
description | Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high‐quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole‐genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long‐chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27‐Mb region of pseudochromosome 4. Our chromosome‐scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids. |
format | Online Article Text |
id | pubmed-7702125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77021252020-12-14 The Acer truncatum genome provides insights into nervonic acid biosynthesis Ma, Qiuyue Sun, Tianlin Li, Shushun Wen, Jing Zhu, Lu Yin, Tongming Yan, Kunyuan Xu, Xiao Li, Shuxian Mao, Jianfeng Wang, Ya‐nan Jin, Shuangxia Zhao, Xing Li, Qianzhong Plant J Original Articles Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high‐quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole‐genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long‐chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27‐Mb region of pseudochromosome 4. Our chromosome‐scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids. John Wiley and Sons Inc. 2020-10-02 2020-11 /pmc/articles/PMC7702125/ /pubmed/32772482 http://dx.doi.org/10.1111/tpj.14954 Text en © 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Ma, Qiuyue Sun, Tianlin Li, Shushun Wen, Jing Zhu, Lu Yin, Tongming Yan, Kunyuan Xu, Xiao Li, Shuxian Mao, Jianfeng Wang, Ya‐nan Jin, Shuangxia Zhao, Xing Li, Qianzhong The Acer truncatum genome provides insights into nervonic acid biosynthesis |
title | The Acer truncatum genome provides insights into nervonic acid biosynthesis |
title_full | The Acer truncatum genome provides insights into nervonic acid biosynthesis |
title_fullStr | The Acer truncatum genome provides insights into nervonic acid biosynthesis |
title_full_unstemmed | The Acer truncatum genome provides insights into nervonic acid biosynthesis |
title_short | The Acer truncatum genome provides insights into nervonic acid biosynthesis |
title_sort | acer truncatum genome provides insights into nervonic acid biosynthesis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702125/ https://www.ncbi.nlm.nih.gov/pubmed/32772482 http://dx.doi.org/10.1111/tpj.14954 |
work_keys_str_mv | AT maqiuyue theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT suntianlin theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT lishushun theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT wenjing theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT zhulu theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT yintongming theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT yankunyuan theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT xuxiao theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT lishuxian theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT maojianfeng theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT wangyanan theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT jinshuangxia theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT zhaoxing theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT liqianzhong theacertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT maqiuyue acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT suntianlin acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT lishushun acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT wenjing acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT zhulu acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT yintongming acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT yankunyuan acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT xuxiao acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT lishuxian acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT maojianfeng acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT wangyanan acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT jinshuangxia acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT zhaoxing acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis AT liqianzhong acertruncatumgenomeprovidesinsightsintonervonicacidbiosynthesis |