Cargando…
Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning
Sequential activity has been observed in multiple neuronal circuits across species, neural structures, and behaviors. It has been hypothesized that sequences could arise from learning processes. However, it is still unclear whether biologically plausible synaptic plasticity rules can organize neuron...
Autores principales: | Gillett, Maxwell, Pereira, Ulises, Brunel, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703604/ https://www.ncbi.nlm.nih.gov/pubmed/33177232 http://dx.doi.org/10.1073/pnas.1918674117 |
Ejemplares similares
-
Unsupervised Learning of Persistent and Sequential Activity
por: Pereira, Ulises, et al.
Publicado: (2020) -
Deep Learning With Asymmetric Connections and Hebbian Updates
por: Amit, Yali
Publicado: (2019) -
Hebbian learning of context in recurrent neural networks
por: Brunnel, N
Publicado: (1995) -
Learning cortical hierarchies with temporal Hebbian updates
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2023) -
Spike-Based Bayesian-Hebbian Learning of Temporal Sequences
por: Tully, Philip J., et al.
Publicado: (2016)