Cargando…
Improved physiological noise regression in fNIRS: A multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis
For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Line...
Autores principales: | von Lühmann, Alexander, Li, Xinge, Müller, Klaus-Robert, Boas, David A., Yücel, Meryem A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703677/ https://www.ncbi.nlm.nih.gov/pubmed/31870944 http://dx.doi.org/10.1016/j.neuroimage.2019.116472 |
Ejemplares similares
-
Open Access Multimodal fNIRS Resting State Dataset With and Without Synthetic Hemodynamic Responses
por: von Lühmann, Alexander, et al.
Publicado: (2020) -
Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective
por: von Lühmann, Alexander, et al.
Publicado: (2020) -
Multivariate Kalman filter regression of confounding physiological signals for real-time classification of fNIRS data
por: Ortega-Martinez, Antonio, et al.
Publicado: (2022) -
Best practices for fNIRS publications
por: Yücel, Meryem A., et al.
Publicado: (2021) -
Errata: Best practices for fNIRS publications
por: Yücel, Meryem A., et al.
Publicado: (2021)