Cargando…
Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning
MOTIVATION: Selecting the optimal machine learning (ML) model for a given dataset is often challenging. Automated ML (AutoML) has emerged as a powerful tool for enabling the automatic selection of ML methods and parameter settings for the prediction of biomedical endpoints. Here, we apply the tree-b...
Autores principales: | Orlenko, Alena, Kofink, Daniel, Lyytikäinen, Leo-Pekka, Nikus, Kjell, Mishra, Pashupati, Kuukasjärvi, Pekka, Karhunen, Pekka J, Kähönen, Mika, Laurikka, Jari O, Lehtimäki, Terho, Asselbergs, Folkert W, Moore, Jason H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703753/ https://www.ncbi.nlm.nih.gov/pubmed/31702773 http://dx.doi.org/10.1093/bioinformatics/btz796 |
Ejemplares similares
-
Assessment of plasma ceramides as predictor for subclinical atherosclerosis
por: Mishra, Pashupati P., et al.
Publicado: (2021) -
The prognostic significance of T‐wave inversion according to ECG lead group during long‐term follow‐up in the general population
por: Istolahti, Tiia, et al.
Publicado: (2020) -
Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods
por: Lehtimäki, Miikael, et al.
Publicado: (2023) -
Prehospital Adenosine Diphosphate Receptor Blocker Use, Culprit Artery Flow, and Mortality in STEMI: The MADDEC Study
por: Hautamäki, Markus, et al.
Publicado: (2021) -
Examining the effect of mitochondrial DNA variants on blood pressure in two Finnish cohorts
por: Laaksonen, Jaakko, et al.
Publicado: (2021)