Cargando…
Metric learning on expression data for gene function prediction
MOTIVATION: Co-expression of two genes across different conditions is indicative of their involvement in the same biological process. However, when using RNA-Seq datasets with many experimental conditions from diverse sources, only a subset of the experimental conditions is expected to be relevant f...
Autores principales: | Makrodimitris, Stavros, Reinders, Marcel J T, van Ham, Roeland C H J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703756/ https://www.ncbi.nlm.nih.gov/pubmed/31562759 http://dx.doi.org/10.1093/bioinformatics/btz731 |
Ejemplares similares
-
Automatic Gene Function Prediction in the 2020’s
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Improving protein function prediction using protein sequence and GO-term similarities
por: Makrodimitris, Stavros, et al.
Publicado: (2019) -
A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2020) -
The Power of Universal Contextualized Protein Embeddings in
Cross-species Protein Function Prediction
por: van den Bent, Irene, et al.
Publicado: (2021)