Cargando…
Non-homogeneous dynamic Bayesian networks with edge-wise sequentially coupled parameters
MOTIVATION: Non-homogeneous dynamic Bayesian networks (NH-DBNs) are a popular tool for learning networks with time-varying interaction parameters. A multiple changepoint process is used to divide the data into disjoint segments and the network interaction parameters are assumed to be segment-specifi...
Autores principales: | Shafiee Kamalabad, Mahdi, Grzegorczyk, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703764/ https://www.ncbi.nlm.nih.gov/pubmed/31504191 http://dx.doi.org/10.1093/bioinformatics/btz690 |
Ejemplares similares
-
Partially non-homogeneous dynamic Bayesian networks based on Bayesian regression models with partitioned design matrices
por: Shafiee Kamalabad, Mahdi, et al.
Publicado: (2019) -
A new Bayesian piecewise linear regression model for dynamic network reconstruction
por: Shafiee Kamalabad, Mahdi, et al.
Publicado: (2021) -
Wise Management of Ovarian Cancer: On the Cutting Edge
por: Boussios, Stergios, et al.
Publicado: (2020) -
Bayesian Depth-Wise Convolutional Neural Network Design for Brain Tumor MRI Classification
por: Ekong, Favour, et al.
Publicado: (2022) -
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016)