Cargando…
Graph embedding on biomedical networks: methods, applications and evaluations
MOTIVATION: Graph embedding learning that aims to automatically learn low-dimensional node representations, has drawn increasing attention in recent years. To date, most recent graph embedding methods are evaluated on social and information networks and are not comprehensively studied on biomedical...
Autores principales: | Yue, Xiang, Wang, Zhen, Huang, Jingong, Parthasarathy, Srinivasan, Moosavinasab, Soheil, Huang, Yungui, Lin, Simon M, Zhang, Wen, Zhang, Ping, Sun, Huan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703771/ https://www.ncbi.nlm.nih.gov/pubmed/31584634 http://dx.doi.org/10.1093/bioinformatics/btz718 |
Ejemplares similares
-
Application and evaluation of knowledge graph embeddings in biomedical data
por: Alshahrani, Mona, et al.
Publicado: (2021) -
A Review on Genomics APIs
por: Swaminathan, Rajeswari, et al.
Publicado: (2015) -
Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches
por: Crichton, Gamal, et al.
Publicado: (2018) -
‘RE:fine drugs’: an interactive dashboard to access drug repurposing opportunities
por: Moosavinasab, Soheil, et al.
Publicado: (2016) -
Predicting biomedical relationships using the knowledge and graph embedding cascade model
por: Liang, Xiaomin, et al.
Publicado: (2019)