Cargando…
Identification of metabolites from tandem mass spectra with a machine learning approach utilizing structural features
MOTIVATION: Untargeted mass spectrometry (MS/MS) is a powerful method for detecting metabolites in biological samples. However, fast and accurate identification of the metabolites’ structures from MS/MS spectra is still a great challenge. RESULTS: We present a new analysis method, called SubFragment...
Autores principales: | Li, Yuanyue, Kuhn, Michael, Gavin, Anne-Claude, Bork, Peer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703789/ https://www.ncbi.nlm.nih.gov/pubmed/31605112 http://dx.doi.org/10.1093/bioinformatics/btz736 |
Ejemplares similares
-
Coupling proteomics and metabolomics for the unsupervised identification of protein–metabolite interactions in Chaetomium thermophilum
por: Li, Yuanyue, et al.
Publicado: (2021) -
An unsupervised machine learning method for assessing quality of tandem mass spectra
por: Lin, Wenjun, et al.
Publicado: (2012) -
Features-Based Deisotoping Method for Tandem Mass Spectra
por: Yuan, Zheng, et al.
Publicado: (2011) -
MESSAR: Automated recommendation of metabolite substructures from tandem mass spectra
por: Liu, Youzhong, et al.
Publicado: (2020) -
High Mass Accuracy Phosphopeptide Identification Using Tandem Mass Spectra
por: Sadygov, Rovshan G.
Publicado: (2012)