Cargando…
Spectrum: fast density-aware spectral clustering for single and multi-omic data
MOTIVATION: Clustering patient omic data is integral to developing precision medicine because it allows the identification of disease subtypes. A current major challenge is the integration multi-omic data to identify a shared structure and reduce noise. Cluster analysis is also increasingly applied...
Autores principales: | John, Christopher R, Watson, David, Barnes, Michael R, Pitzalis, Costantino, Lewis, Myles J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703791/ https://www.ncbi.nlm.nih.gov/pubmed/31501851 http://dx.doi.org/10.1093/bioinformatics/btz704 |
Ejemplares similares
-
M3C: Monte Carlo reference-based consensus clustering
por: John, Christopher R., et al.
Publicado: (2020) -
nestedcv: an R package for fast implementation of nested cross-validation with embedded feature selection designed for transcriptomics and high-dimensional data
por: Lewis, Myles J, et al.
Publicado: (2023) -
DNA Methylation Signatures of Response to Conventional Synthetic and Biologic Disease-Modifying Antirheumatic Drugs (DMARDs) in Rheumatoid Arthritis
por: Wang, Susan Siyu, et al.
Publicado: (2023) -
Disentangling single-cell omics representation with a power spectral density-based feature extraction
por: Zandavi, Seid Miad, et al.
Publicado: (2022) -
Generation of restriction endonucleases barcode map to trace SARS-CoV-2 origin and evolution
por: Colombo, Federico, et al.
Publicado: (2021)