Cargando…
Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids
[Image: see text] From drying blood to oil paint, the developing of a glassy phase from colloids is observed on a daily basis. Colloidal glass is solid soft matter that consists of two intertwined phases: a random packed particle network and a fluid solvent. By dispersing charged rod-like cellulose...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704027/ https://www.ncbi.nlm.nih.gov/pubmed/31927969 http://dx.doi.org/10.1021/acs.langmuir.9b03570 |
_version_ | 1783616742442926080 |
---|---|
author | Chu, Guang Vasilyev, Gleb Qu, Dan Deng, Shengwei Bai, Long Rojas, Orlando J. Zussman, Eyal |
author_facet | Chu, Guang Vasilyev, Gleb Qu, Dan Deng, Shengwei Bai, Long Rojas, Orlando J. Zussman, Eyal |
author_sort | Chu, Guang |
collection | PubMed |
description | [Image: see text] From drying blood to oil paint, the developing of a glassy phase from colloids is observed on a daily basis. Colloidal glass is solid soft matter that consists of two intertwined phases: a random packed particle network and a fluid solvent. By dispersing charged rod-like cellulose nanoparticles into a water–ethylene glycol cosolvent, here we demonstrate a new kind of colloidal glass with a high liquid crystalline order, namely, two general superstructures with nematic and cholesteric packing states are preserved and jammed inside the glass matrix. During the glass formation process, structural arrest and phase transition occur simultaneously at high particle concentrations, yielding solid-like behavior as well as a frozen liquid crystal texture that is because of caging of the charged colloids through neighboring long-ranged repulsive interactions. |
format | Online Article Text |
id | pubmed-7704027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77040272020-12-02 Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids Chu, Guang Vasilyev, Gleb Qu, Dan Deng, Shengwei Bai, Long Rojas, Orlando J. Zussman, Eyal Langmuir [Image: see text] From drying blood to oil paint, the developing of a glassy phase from colloids is observed on a daily basis. Colloidal glass is solid soft matter that consists of two intertwined phases: a random packed particle network and a fluid solvent. By dispersing charged rod-like cellulose nanoparticles into a water–ethylene glycol cosolvent, here we demonstrate a new kind of colloidal glass with a high liquid crystalline order, namely, two general superstructures with nematic and cholesteric packing states are preserved and jammed inside the glass matrix. During the glass formation process, structural arrest and phase transition occur simultaneously at high particle concentrations, yielding solid-like behavior as well as a frozen liquid crystal texture that is because of caging of the charged colloids through neighboring long-ranged repulsive interactions. American Chemical Society 2020-01-13 2020-02-04 /pmc/articles/PMC7704027/ /pubmed/31927969 http://dx.doi.org/10.1021/acs.langmuir.9b03570 Text en This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Chu, Guang Vasilyev, Gleb Qu, Dan Deng, Shengwei Bai, Long Rojas, Orlando J. Zussman, Eyal Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids |
title | Structural Arrest and Phase Transition in Glassy Nanocellulose
Colloids |
title_full | Structural Arrest and Phase Transition in Glassy Nanocellulose
Colloids |
title_fullStr | Structural Arrest and Phase Transition in Glassy Nanocellulose
Colloids |
title_full_unstemmed | Structural Arrest and Phase Transition in Glassy Nanocellulose
Colloids |
title_short | Structural Arrest and Phase Transition in Glassy Nanocellulose
Colloids |
title_sort | structural arrest and phase transition in glassy nanocellulose
colloids |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704027/ https://www.ncbi.nlm.nih.gov/pubmed/31927969 http://dx.doi.org/10.1021/acs.langmuir.9b03570 |
work_keys_str_mv | AT chuguang structuralarrestandphasetransitioninglassynanocellulosecolloids AT vasilyevgleb structuralarrestandphasetransitioninglassynanocellulosecolloids AT qudan structuralarrestandphasetransitioninglassynanocellulosecolloids AT dengshengwei structuralarrestandphasetransitioninglassynanocellulosecolloids AT bailong structuralarrestandphasetransitioninglassynanocellulosecolloids AT rojasorlandoj structuralarrestandphasetransitioninglassynanocellulosecolloids AT zussmaneyal structuralarrestandphasetransitioninglassynanocellulosecolloids |