Cargando…
Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry
[Image: see text] This work combines a machine learning potential energy function with a modular enhanced sampling scheme to obtain statistically converged thermodynamical properties of flexible medium-size organic molecules at high ab initio level. We offer a modular environment in the python packa...
Autores principales: | Fabregat, Raimon, Fabrizio, Alberto, Meyer, Benjamin, Hollas, Daniel, Corminboeuf, Clémence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704029/ https://www.ncbi.nlm.nih.gov/pubmed/32212720 http://dx.doi.org/10.1021/acs.jctc.0c00100 |
Ejemplares similares
-
SPA(H)M: the spectrum of approximated Hamiltonian matrices representations
por: Fabrizio, Alberto, et al.
Publicado: (2022) -
Local Kernel Regression and Neural Network Approaches
to the Conformational Landscapes of Oligopeptides
por: Fabregat, Raimon, et al.
Publicado: (2022) -
Coupling Coarse-Grained to Fine-Grained Models via
Hamiltonian Replica Exchange
por: Liu, Yang, et al.
Publicado: (2020) -
Evaluation
of Enhanced Sampling Provided by Accelerated
Molecular Dynamics with Hamiltonian Replica Exchange Methods
por: Roe, Daniel R., et al.
Publicado: (2014) -
Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts
por: Gallarati, Simone, et al.
Publicado: (2021)