Cargando…
Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA
In this Letter, the field programmable gate array (FPGA) implementation of a foetal heart rate (FHR) monitoring system is presented. The system comprises a preprocessing unit to remove various types of noise, followed by a foetal electrocardiogram (FECG) extraction unit and an FHR detection unit. To...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704145/ https://www.ncbi.nlm.nih.gov/pubmed/33282322 http://dx.doi.org/10.1049/htl.2020.0016 |
Sumario: | In this Letter, the field programmable gate array (FPGA) implementation of a foetal heart rate (FHR) monitoring system is presented. The system comprises a preprocessing unit to remove various types of noise, followed by a foetal electrocardiogram (FECG) extraction unit and an FHR detection unit. To improve the precision and accuracy of the arithmetic operations, a floating-point unit is developed. A least mean squares algorithm-based adaptive filter (LMS-AF) is used for FECG extraction. Two different architectures, namely series and parallel, are proposed for the LMS-AF, with the series architecture targeting lower utilisation of hardware resources, and the parallel architecture enabling less convergence time and lower power consumption. The results show that it effectively detects the R peaks in the extracted FECG with a sensitivity of 95.74–100% and a specificity of 100%. The parallel architecture shows up to an 85.88% reduction in the convergence time for non-invasive FECG databases while the series architecture shows a 27.41% reduction in the number of flip flops used when compared with the existing FPGA implementations of various FECG extraction methods. It also shows an increase of 2–7.51% in accuracy when compared to previous works. |
---|