Cargando…

Comprehensive gene expression profiling of human astrocytes treated with a hepatic encephalopathy-inducible factor, alpha 1-antichymotripsin

Astrocytes are major glial cells that play a critical role in brain homeostasis. Abnormalities in astrocytic function, such as hepatic encephalopathy (HE) during acute liver failure, can result in brain death following brain edema and the associated astrocyte swelling. Recently, we have identified a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawaguchi, Kenji, Park, Jonghyuk, Masaki, Takahiro, Mezaki, Yoshihiro, Ochi, Sae, Matsuura, Tomokazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704407/
https://www.ncbi.nlm.nih.gov/pubmed/33299931
http://dx.doi.org/10.1016/j.bbrep.2020.100855
Descripción
Sumario:Astrocytes are major glial cells that play a critical role in brain homeostasis. Abnormalities in astrocytic function, such as hepatic encephalopathy (HE) during acute liver failure, can result in brain death following brain edema and the associated astrocyte swelling. Recently, we have identified alpha 1-antichymotripsin (ACT) to be a biomarker candidate for HE. ACT induces astrocyte swelling by upregulating aquaporin 4 (AQP4); however, the causal connection between these proteins is not clear yet. In this study, we utilized a microarray profile to screen the differentially expressed genes (DEGs) in astrocytes treated with ACT. We then performed Gene Ontology, REACTOME, and the comprehensive resource of mammalian protein complexes (CORUM) enrichment analyses of the identified DEGs. The results of these analyses indicated that the DEGs were enriched in pathways activating adenylate cyclase (AC)-coupled G protein-coupled receptors (GPCRs) and therefore were involved in the cyclic adenosine monophosphate (cAMP) signaling. These results indicate that ACT may act as a ligand of Gs-GPCRs and subsequently upregulate cAMP. As cAMP is known to upregulate AQP4 in astrocytes, these results suggest that ACT may upregulate AQP4 by activating AC GPCRs and therefore serve as a therapeutic target for acute HE.