Cargando…
A molecular cell atlas of the human lung from single cell RNA sequencing
Although single cell RNA sequencing studies have begun providing compendia of cell expression profiles(1–9), it has proven more difficult to systematically identify and localize all molecular types in individual organs to create a full molecular cell atlas. Here we describe droplet- and plate-based...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704697/ https://www.ncbi.nlm.nih.gov/pubmed/33208946 http://dx.doi.org/10.1038/s41586-020-2922-4 |
_version_ | 1783616851149848576 |
---|---|
author | Travaglini, Kyle J. Nabhan, Ahmad N. Penland, Lolita Sinha, Rahul Gillich, Astrid Sit, Rene V. Chang, Stephen Conley, Stephanie D. Mori, Yasuo Seita, Jun Berry, Gerald J. Shrager, Joseph B. Metzger, Ross J. Kuo, Christin S. Neff, Norma Weissman, Irving L. Quake, Stephen R. Krasnow, Mark A. |
author_facet | Travaglini, Kyle J. Nabhan, Ahmad N. Penland, Lolita Sinha, Rahul Gillich, Astrid Sit, Rene V. Chang, Stephen Conley, Stephanie D. Mori, Yasuo Seita, Jun Berry, Gerald J. Shrager, Joseph B. Metzger, Ross J. Kuo, Christin S. Neff, Norma Weissman, Irving L. Quake, Stephen R. Krasnow, Mark A. |
author_sort | Travaglini, Kyle J. |
collection | PubMed |
description | Although single cell RNA sequencing studies have begun providing compendia of cell expression profiles(1–9), it has proven more difficult to systematically identify and localize all molecular types in individual organs to create a full molecular cell atlas. Here we describe droplet- and plate-based single cell RNA sequencing (scRNAseq) applied to ~75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, which have allowed us to define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 of 45 previously known cell types or subtypes and 14 new ones. This comprehensive molecular atlas elucidates the biochemical functions of lung cell types and the cell-selective transcription factors and optimal markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signaling interactions including sources and targets of chemokines in immune cell trafficking and expression changes on lung homing; and identifies the cell types directly affected by lung disease genes and respiratory viruses. Comparison to mouse identified 17 molecular types that appear to have been gained or lost during lung evolution and others whose expression profiles have been substantially altered, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions, and interactions are achieved in development and tissue engineering and altered in disease and evolution. |
format | Online Article Text |
id | pubmed-7704697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77046972021-05-18 A molecular cell atlas of the human lung from single cell RNA sequencing Travaglini, Kyle J. Nabhan, Ahmad N. Penland, Lolita Sinha, Rahul Gillich, Astrid Sit, Rene V. Chang, Stephen Conley, Stephanie D. Mori, Yasuo Seita, Jun Berry, Gerald J. Shrager, Joseph B. Metzger, Ross J. Kuo, Christin S. Neff, Norma Weissman, Irving L. Quake, Stephen R. Krasnow, Mark A. Nature Article Although single cell RNA sequencing studies have begun providing compendia of cell expression profiles(1–9), it has proven more difficult to systematically identify and localize all molecular types in individual organs to create a full molecular cell atlas. Here we describe droplet- and plate-based single cell RNA sequencing (scRNAseq) applied to ~75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, which have allowed us to define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 of 45 previously known cell types or subtypes and 14 new ones. This comprehensive molecular atlas elucidates the biochemical functions of lung cell types and the cell-selective transcription factors and optimal markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signaling interactions including sources and targets of chemokines in immune cell trafficking and expression changes on lung homing; and identifies the cell types directly affected by lung disease genes and respiratory viruses. Comparison to mouse identified 17 molecular types that appear to have been gained or lost during lung evolution and others whose expression profiles have been substantially altered, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions, and interactions are achieved in development and tissue engineering and altered in disease and evolution. 2020-11-18 2020-11 /pmc/articles/PMC7704697/ /pubmed/33208946 http://dx.doi.org/10.1038/s41586-020-2922-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Travaglini, Kyle J. Nabhan, Ahmad N. Penland, Lolita Sinha, Rahul Gillich, Astrid Sit, Rene V. Chang, Stephen Conley, Stephanie D. Mori, Yasuo Seita, Jun Berry, Gerald J. Shrager, Joseph B. Metzger, Ross J. Kuo, Christin S. Neff, Norma Weissman, Irving L. Quake, Stephen R. Krasnow, Mark A. A molecular cell atlas of the human lung from single cell RNA sequencing |
title | A molecular cell atlas of the human lung from single cell RNA sequencing |
title_full | A molecular cell atlas of the human lung from single cell RNA sequencing |
title_fullStr | A molecular cell atlas of the human lung from single cell RNA sequencing |
title_full_unstemmed | A molecular cell atlas of the human lung from single cell RNA sequencing |
title_short | A molecular cell atlas of the human lung from single cell RNA sequencing |
title_sort | molecular cell atlas of the human lung from single cell rna sequencing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704697/ https://www.ncbi.nlm.nih.gov/pubmed/33208946 http://dx.doi.org/10.1038/s41586-020-2922-4 |
work_keys_str_mv | AT travaglinikylej amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT nabhanahmadn amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT penlandlolita amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT sinharahul amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT gillichastrid amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT sitrenev amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT changstephen amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT conleystephanied amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT moriyasuo amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT seitajun amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT berrygeraldj amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT shragerjosephb amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT metzgerrossj amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT kuochristins amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT neffnorma amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT weissmanirvingl amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT quakestephenr amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT krasnowmarka amolecularcellatlasofthehumanlungfromsinglecellrnasequencing AT travaglinikylej molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT nabhanahmadn molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT penlandlolita molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT sinharahul molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT gillichastrid molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT sitrenev molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT changstephen molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT conleystephanied molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT moriyasuo molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT seitajun molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT berrygeraldj molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT shragerjosephb molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT metzgerrossj molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT kuochristins molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT neffnorma molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT weissmanirvingl molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT quakestephenr molecularcellatlasofthehumanlungfromsinglecellrnasequencing AT krasnowmarka molecularcellatlasofthehumanlungfromsinglecellrnasequencing |