Cargando…
Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI
BACKGROUND: Time-efficient and accurate whole volume thigh muscle segmentation is a major challenge in moving from qualitative assessment of thigh muscle MRI to more quantitative methods. This study developed an automated whole thigh muscle segmentation method using deep learning for reproducible fa...
Autores principales: | Ding, Jie, Cao, Peng, Chang, Hing-Chiu, Gao, Yuan, Chan, Sophelia Hoi Shan, Vardhanabhuti, Varut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704819/ https://www.ncbi.nlm.nih.gov/pubmed/33252711 http://dx.doi.org/10.1186/s13244-020-00946-8 |
Ejemplares similares
-
Comparison of Multimaterial Decomposition Fat Fraction with DECT and Proton Density Fat Fraction with IDEAL IQ MRI for Quantification of Liver Steatosis in a Population Exposed to Chemotherapy
por: Corrias, Giuseppe, et al.
Publicado: (2021) -
Segmentation of the fascia lata and reproducible quantification of intermuscular adipose tissue (IMAT) of the thigh
por: Chaudry, Oliver, et al.
Publicado: (2020) -
Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat
por: Lin, Yi-Ru, et al.
Publicado: (2014) -
Automatic Vertebral Body Segmentation Based on Deep Learning of Dixon Images for Bone Marrow Fat Fraction Quantification
por: Zhou, Jiamin, et al.
Publicado: (2020) -
Quantification of the renal sinus fat and exploration of its relationship with ectopic fat deposition in normal subjects using MRI fat fraction mapping
por: Zhang, Qin-He, et al.
Publicado: (2023)