Cargando…
Improving Accelerometry-Based Measurement of Functional Use of the Upper Extremity After Stroke: Machine Learning Versus Counts Threshold Method
BACKGROUND: Wrist-worn accelerometry provides objective monitoring of upper-extremity functional use, such as reaching tasks, but also detects nonfunctional movements, leading to ambiguity in monitoring results. OBJECTIVE: Compare machine learning algorithms with standard methods (counts ratio) to i...
Autores principales: | Lum, Peter S., Shu, Liqi, Bochniewicz, Elaine M., Tran, Tan, Chang, Lin-Ching, Barth, Jessica, Dromerick, Alexander W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704838/ https://www.ncbi.nlm.nih.gov/pubmed/33150830 http://dx.doi.org/10.1177/1545968320962483 |
Ejemplares similares
-
Measurement of Functional Use in Upper Extremity Prosthetic Devices Using Wearable Sensors and Machine Learning
por: Bochniewicz, Elaine M., et al.
Publicado: (2023) -
Concurrent validity of machine learning-classified functional upper extremity use from accelerometry in chronic stroke
por: Geed, Shashwati, et al.
Publicado: (2023) -
Characterizing upper extremity motor behavior in the first week after stroke
por: Barth, Jessica, et al.
Publicado: (2020) -
Suitability of accelerometry as an objective measure for upper extremity use in stroke patients
por: Heye, Anne-Lisa, et al.
Publicado: (2022) -
Relationships between accelerometry and general compensatory movements of the upper limb after stroke
por: Barth, Jessica, et al.
Publicado: (2020)