Cargando…

Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis

The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using (13)C isotopomer analysis, we sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Mackenzie, Jared S., Lamprecht, Dirk A., Asmal, Rukaya, Adamson, John H., Borah, Khushboo, Beste, Dany J. V., Lee, Bei Shi, Pethe, Kevin, Rousseau, Simon, Krieger, Inna, Sacchettini, James C., Glasgow, Joel N., Steyn, Adrie J. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705017/
https://www.ncbi.nlm.nih.gov/pubmed/33257709
http://dx.doi.org/10.1038/s41467-020-19959-4
_version_ 1783616875560697856
author Mackenzie, Jared S.
Lamprecht, Dirk A.
Asmal, Rukaya
Adamson, John H.
Borah, Khushboo
Beste, Dany J. V.
Lee, Bei Shi
Pethe, Kevin
Rousseau, Simon
Krieger, Inna
Sacchettini, James C.
Glasgow, Joel N.
Steyn, Adrie J. C.
author_facet Mackenzie, Jared S.
Lamprecht, Dirk A.
Asmal, Rukaya
Adamson, John H.
Borah, Khushboo
Beste, Dany J. V.
Lee, Bei Shi
Pethe, Kevin
Rousseau, Simon
Krieger, Inna
Sacchettini, James C.
Glasgow, Joel N.
Steyn, Adrie J. C.
author_sort Mackenzie, Jared S.
collection PubMed
description The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using (13)C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis.
format Online
Article
Text
id pubmed-7705017
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-77050172020-12-03 Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis Mackenzie, Jared S. Lamprecht, Dirk A. Asmal, Rukaya Adamson, John H. Borah, Khushboo Beste, Dany J. V. Lee, Bei Shi Pethe, Kevin Rousseau, Simon Krieger, Inna Sacchettini, James C. Glasgow, Joel N. Steyn, Adrie J. C. Nat Commun Article The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using (13)C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis. Nature Publishing Group UK 2020-11-30 /pmc/articles/PMC7705017/ /pubmed/33257709 http://dx.doi.org/10.1038/s41467-020-19959-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mackenzie, Jared S.
Lamprecht, Dirk A.
Asmal, Rukaya
Adamson, John H.
Borah, Khushboo
Beste, Dany J. V.
Lee, Bei Shi
Pethe, Kevin
Rousseau, Simon
Krieger, Inna
Sacchettini, James C.
Glasgow, Joel N.
Steyn, Adrie J. C.
Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
title Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
title_full Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
title_fullStr Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
title_full_unstemmed Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
title_short Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
title_sort bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in mycobacterium tuberculosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705017/
https://www.ncbi.nlm.nih.gov/pubmed/33257709
http://dx.doi.org/10.1038/s41467-020-19959-4
work_keys_str_mv AT mackenziejareds bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT lamprechtdirka bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT asmalrukaya bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT adamsonjohnh bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT borahkhushboo bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT bestedanyjv bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT leebeishi bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT pethekevin bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT rousseausimon bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT kriegerinna bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT sacchettinijamesc bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT glasgowjoeln bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis
AT steynadriejc bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis