Cargando…
Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis
The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using (13)C isotopomer analysis, we sh...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705017/ https://www.ncbi.nlm.nih.gov/pubmed/33257709 http://dx.doi.org/10.1038/s41467-020-19959-4 |
_version_ | 1783616875560697856 |
---|---|
author | Mackenzie, Jared S. Lamprecht, Dirk A. Asmal, Rukaya Adamson, John H. Borah, Khushboo Beste, Dany J. V. Lee, Bei Shi Pethe, Kevin Rousseau, Simon Krieger, Inna Sacchettini, James C. Glasgow, Joel N. Steyn, Adrie J. C. |
author_facet | Mackenzie, Jared S. Lamprecht, Dirk A. Asmal, Rukaya Adamson, John H. Borah, Khushboo Beste, Dany J. V. Lee, Bei Shi Pethe, Kevin Rousseau, Simon Krieger, Inna Sacchettini, James C. Glasgow, Joel N. Steyn, Adrie J. C. |
author_sort | Mackenzie, Jared S. |
collection | PubMed |
description | The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using (13)C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis. |
format | Online Article Text |
id | pubmed-7705017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77050172020-12-03 Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis Mackenzie, Jared S. Lamprecht, Dirk A. Asmal, Rukaya Adamson, John H. Borah, Khushboo Beste, Dany J. V. Lee, Bei Shi Pethe, Kevin Rousseau, Simon Krieger, Inna Sacchettini, James C. Glasgow, Joel N. Steyn, Adrie J. C. Nat Commun Article The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using (13)C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis. Nature Publishing Group UK 2020-11-30 /pmc/articles/PMC7705017/ /pubmed/33257709 http://dx.doi.org/10.1038/s41467-020-19959-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Mackenzie, Jared S. Lamprecht, Dirk A. Asmal, Rukaya Adamson, John H. Borah, Khushboo Beste, Dany J. V. Lee, Bei Shi Pethe, Kevin Rousseau, Simon Krieger, Inna Sacchettini, James C. Glasgow, Joel N. Steyn, Adrie J. C. Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis |
title | Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis |
title_full | Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis |
title_fullStr | Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis |
title_full_unstemmed | Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis |
title_short | Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis |
title_sort | bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in mycobacterium tuberculosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705017/ https://www.ncbi.nlm.nih.gov/pubmed/33257709 http://dx.doi.org/10.1038/s41467-020-19959-4 |
work_keys_str_mv | AT mackenziejareds bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT lamprechtdirka bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT asmalrukaya bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT adamsonjohnh bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT borahkhushboo bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT bestedanyjv bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT leebeishi bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT pethekevin bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT rousseausimon bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT kriegerinna bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT sacchettinijamesc bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT glasgowjoeln bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis AT steynadriejc bedaquilinereprogramscentralmetabolismtorevealglycolyticvulnerabilityinmycobacteriumtuberculosis |