Cargando…

Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis

The coronavirus disease of 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which started in late 2019 in Wuhan, China spread to the whole world in a short period of time, and thousands of people have died due to this epidemic. Although scientists have...

Descripción completa

Detalles Bibliográficos
Autores principales: Çakır, Bilal, Okuyan, Betul, Şener, Göksel, Tunali-Akbay, Tugba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705332/
https://www.ncbi.nlm.nih.gov/pubmed/33271151
http://dx.doi.org/10.1016/j.ejphar.2020.173781
Descripción
Sumario:The coronavirus disease of 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which started in late 2019 in Wuhan, China spread to the whole world in a short period of time, and thousands of people have died due to this epidemic. Although scientists have been searching for methods to manage SARS-CoV-2, there is no specific medication against COVID-19 as of yet. Two main approaches should be followed in the treatment of SARS-CoV-2; one of which is to neutralize the virus, and the other is to inhibit the host cell membrane receptors, where SARS-CoV-2 will bind. In this study, peptides derived from beta-lactoglobulin, which inactivates both the virus and its receptors in the host cell, were identified using computer-based in silico analysis. The beta-lactoglobulin derived peptides used in this study were obtained by the treatment of goat milk whey fraction with trypsin. The structure of the peptides was characterized by the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS), and six beta-lactoglobulin derived peptides were selected as candidate peptides. Subsequently, the effects of peptides on SARS-CoV-2 and host cells were identified using virtual screening. According to the results of this in silico analysis, Ala-Leu-Pro-Met-His-Ile-Arg (ALMPHIR) and Ile-Pro-Ala-Val-Phe-Lys (IPAVFK) peptides were evaluated as potential candidates to be used in the treatment of SARS-CoV-2 after the future in vitro and in vivo studies.