Cargando…

Validation of pore network modeling for determination of two-phase transport in fibrous porous media

Pore network modeling (PNM) has been widely investigated in the study of multiphase transport in porous media due to its high computational efficiency. The advantage of PNM is achieved in part at the cost of using simplified geometrical elements. Therefore, the validation of pore network modeling ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xiang, Zhou, Wei, Deng, Daxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705660/
https://www.ncbi.nlm.nih.gov/pubmed/33257750
http://dx.doi.org/10.1038/s41598-020-74581-0
Descripción
Sumario:Pore network modeling (PNM) has been widely investigated in the study of multiphase transport in porous media due to its high computational efficiency. The advantage of PNM is achieved in part at the cost of using simplified geometrical elements. Therefore, the validation of pore network modeling needs further verification. A Shan-Chen (SC) multiphase lattice Boltzmann model (LBM) was used to simulate the multiphase flow and provided as the benchmark. PNM using different definitions of throat radius was performed and compared. The results showed that the capillary pressure and saturation curves agreed well when throat radius was calculated using the area-equivalent radius. The discrepancy of predicted phase occupations from different methods was compared in slice images and the reason can be attributed to the capillary pressure gradients demonstrated in LBM. Finally, the relative permeability was also predicted using PNM and provided acceptable predictions when compared with the results using single-phase LBM.