Cargando…
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
Building upon the d-band reactivity theory in surface chemistry and catalysis, we develop a Bayesian learning approach to probing chemisorption processes at atomically tailored metal sites. With representative species, e.g., *O and *OH, Bayesian models trained with ab initio adsorption properties of...
Autores principales: | Wang, Siwen, Pillai, Hemanth Somarajan, Xin, Hongliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705683/ https://www.ncbi.nlm.nih.gov/pubmed/33257689 http://dx.doi.org/10.1038/s41467-020-19524-z |
Ejemplares similares
-
Infusing theory into deep learning for interpretable reactivity prediction
por: Wang, Shih-Han, et al.
Publicado: (2021) -
On-Chip in Situ Monitoring of Competitive Interfacial
Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics
por: Ding, Mengning, et al.
Publicado: (2018) -
Theory of chemisorption
por: Smith, John R
Publicado: (1980) -
Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights
por: Gao, Qiang, et al.
Publicado: (2022) -
Room-Temperature
Reversible Chemisorption of Carbon
Monoxide on Nickel(0) Complexes
por: Yamauchi, Yasuhiro, et al.
Publicado: (2022)