Cargando…
The Effect of MicroRNA-Mediated Exercise on Delaying Sarcopenia in Elderly Individuals
Sarcopenia is often regarded as an early sign of weakness and is the core element of muscle weakness in elderly individuals. Sarcopenia is closely related to the reduction of exercise, and elderly individuals often suffer from decreased muscle mass and function due to a lack of exercise. At present,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705785/ https://www.ncbi.nlm.nih.gov/pubmed/33293908 http://dx.doi.org/10.1177/1559325820974543 |
Sumario: | Sarcopenia is often regarded as an early sign of weakness and is the core element of muscle weakness in elderly individuals. Sarcopenia is closely related to the reduction of exercise, and elderly individuals often suffer from decreased muscle mass and function due to a lack of exercise. At present, studies have confirmed that resistance and aerobic exercise are related to muscle mass, strength and fiber type and to the activation and proliferation of muscle stem cells (MuSCs). Increasing evidence shows that microRNAs (miRNAs) play an important role in exercise-related changes in the quantity, composition and function of skeletal muscle. At the cellular level, miRNAs have been shown to regulate the proliferation and differentiation of muscle cells. In addition, miRNAs are related to the composition and transformation of muscle fibers and involved in the transition of MuSCs from the resting state to the activated state. Therefore, exercise may delay sarcopenia in elderly individuals by regulating miRNAs in skeletal muscle. In future miRNA-focused treatment strategies, these studies will provide valuable information for the formulation of exercise methods and will provide useful and targeted exercise programs for elderly individuals with sarcopenia. |
---|