Cargando…

Utility of Thromboelastography to Identify Hypercoagulability in Lung Cancer Related Ischemic Stroke Patients

Lung cancer related hypercoagulability could increase the risk of ischemic stroke. Routine coagulation tests may have limited capacity in evaluating hypercoagulability. The aim of this study was to investigate the ability of thromboelastography (TEG) in the identification of hypercoagulability in pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Quan, Xuemei, Qin, Qixiong, Que, Xianting, Chen, Ya, Wei, Yunfei, Chen, Hao, Li, Qianqian, Meng, Chaoguo, Liang, Zhijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705814/
https://www.ncbi.nlm.nih.gov/pubmed/33232174
http://dx.doi.org/10.1177/1076029620975502
Descripción
Sumario:Lung cancer related hypercoagulability could increase the risk of ischemic stroke. Routine coagulation tests may have limited capacity in evaluating hypercoagulability. The aim of this study was to investigate the ability of thromboelastography (TEG) in the identification of hypercoagulability in patients with lung cancer and cryptogenic ischemic stroke (LCIS). Between January 2016 and December 2018, whole citrated blood from LCIS patients (n = 35) and age- and gender-matched lung cancer patients and healthy volunteers were used for TEG and routine coagulation tests. The coagulation indicator and clinical data were compared among the 3 groups. There were 27/35 (77.14%) on TEG and 18/35 (51.43%) on routine coagulation tests of LCIS patients who had evidence of hypercoagulability. The detection rate of hypercoagulability by TEG in LCIS patients was higher than routine coagulation tests (P = 0.018). Comparing with lung cancer patients and healthy controls, LCIS patients have a significantly higher maximum amplitude (MA), fibrinogen, and D-dimer. Multivariate analysis showed that D-dimer and MA were significantly associated with ischemic stroke in lung cancer patients. ROC curve showed that the area under the curve of TEG (0.790 ± 0.048, 95% CI: 0.697-0.864) was significantly higher than routine coagulation tests (0.673 ± 0.059, 95% CI: 0.572-0.763) (P = 0.04) in identifying hypercoagulability in LCIS patients. Therefore, TEG could identify hypercoagulability in LCIS patients and healthy controls. Identification of hypercoagulability in lung cancer patients by TEG may be helpful to prevent the occurrence of LCIS.