Cargando…
Unveiling Temperature-Induced Structural Domains and Movement of Oxygen Vacancies in SrTiO(3) with Graphene
[Image: see text] Heterointerfaces coupling complex oxides exhibit coexisting functional properties such as magnetism, superconductivity, and ferroelectricity, often absent in their individual constituent. SrTiO(3) (STO), a canonical band insulator, is an active constituent of such heterointerfaces....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705893/ https://www.ncbi.nlm.nih.gov/pubmed/33175485 http://dx.doi.org/10.1021/acsami.0c15458 |
_version_ | 1783617043006750720 |
---|---|
author | Chen, Si Chen, Xin Duijnstee, Elisabeth A. Sanyal, Biplab Banerjee, Tamalika |
author_facet | Chen, Si Chen, Xin Duijnstee, Elisabeth A. Sanyal, Biplab Banerjee, Tamalika |
author_sort | Chen, Si |
collection | PubMed |
description | [Image: see text] Heterointerfaces coupling complex oxides exhibit coexisting functional properties such as magnetism, superconductivity, and ferroelectricity, often absent in their individual constituent. SrTiO(3) (STO), a canonical band insulator, is an active constituent of such heterointerfaces. Temperature-, strain-, or mechanical stress-induced ferroelastic transition leads to the formation of narrow domains and domain walls in STO. Such ferroelastic domain walls have been studied using imaging or transport techniques and, often, the findings are influenced by the choice and interaction of the electrodes with STO. In this work, we use graphene as a unique platform to unveil the movement of oxygen vacancies and ferroelastic domain walls near the STO surface by studying the temperature and gate bias dependence of charge transport in graphene. By sweeping the back gate voltage, we observe antihysteresis in graphene typically observed in conventional ferroelectric oxides. Interestingly, we find features in antihysteresis that are related to the movement of domain walls and of oxygen vacancies in STO. We ascertain this by analyzing the time dependence of the graphene square resistance at different temperatures and gate bias. Density functional calculations estimate the surface polarization and formation energies of layer-dependent oxygen vacancies in STO. This corroborates quantitatively with the activation energies determined from the temperature dependence of the graphene square resistance. Introduction of a hexagonal boron nitride (hBN) layer, of varying thicknesses, between graphene and STO leads to a gradual disappearance of the observed features, implying the influence of the domain walls onto the potential landscape in graphene. |
format | Online Article Text |
id | pubmed-7705893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77058932020-12-02 Unveiling Temperature-Induced Structural Domains and Movement of Oxygen Vacancies in SrTiO(3) with Graphene Chen, Si Chen, Xin Duijnstee, Elisabeth A. Sanyal, Biplab Banerjee, Tamalika ACS Appl Mater Interfaces [Image: see text] Heterointerfaces coupling complex oxides exhibit coexisting functional properties such as magnetism, superconductivity, and ferroelectricity, often absent in their individual constituent. SrTiO(3) (STO), a canonical band insulator, is an active constituent of such heterointerfaces. Temperature-, strain-, or mechanical stress-induced ferroelastic transition leads to the formation of narrow domains and domain walls in STO. Such ferroelastic domain walls have been studied using imaging or transport techniques and, often, the findings are influenced by the choice and interaction of the electrodes with STO. In this work, we use graphene as a unique platform to unveil the movement of oxygen vacancies and ferroelastic domain walls near the STO surface by studying the temperature and gate bias dependence of charge transport in graphene. By sweeping the back gate voltage, we observe antihysteresis in graphene typically observed in conventional ferroelectric oxides. Interestingly, we find features in antihysteresis that are related to the movement of domain walls and of oxygen vacancies in STO. We ascertain this by analyzing the time dependence of the graphene square resistance at different temperatures and gate bias. Density functional calculations estimate the surface polarization and formation energies of layer-dependent oxygen vacancies in STO. This corroborates quantitatively with the activation energies determined from the temperature dependence of the graphene square resistance. Introduction of a hexagonal boron nitride (hBN) layer, of varying thicknesses, between graphene and STO leads to a gradual disappearance of the observed features, implying the influence of the domain walls onto the potential landscape in graphene. American Chemical Society 2020-11-11 2020-11-25 /pmc/articles/PMC7705893/ /pubmed/33175485 http://dx.doi.org/10.1021/acsami.0c15458 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Chen, Si Chen, Xin Duijnstee, Elisabeth A. Sanyal, Biplab Banerjee, Tamalika Unveiling Temperature-Induced Structural Domains and Movement of Oxygen Vacancies in SrTiO(3) with Graphene |
title | Unveiling
Temperature-Induced Structural Domains and
Movement of Oxygen Vacancies in SrTiO(3) with Graphene |
title_full | Unveiling
Temperature-Induced Structural Domains and
Movement of Oxygen Vacancies in SrTiO(3) with Graphene |
title_fullStr | Unveiling
Temperature-Induced Structural Domains and
Movement of Oxygen Vacancies in SrTiO(3) with Graphene |
title_full_unstemmed | Unveiling
Temperature-Induced Structural Domains and
Movement of Oxygen Vacancies in SrTiO(3) with Graphene |
title_short | Unveiling
Temperature-Induced Structural Domains and
Movement of Oxygen Vacancies in SrTiO(3) with Graphene |
title_sort | unveiling
temperature-induced structural domains and
movement of oxygen vacancies in srtio(3) with graphene |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705893/ https://www.ncbi.nlm.nih.gov/pubmed/33175485 http://dx.doi.org/10.1021/acsami.0c15458 |
work_keys_str_mv | AT chensi unveilingtemperatureinducedstructuraldomainsandmovementofoxygenvacanciesinsrtio3withgraphene AT chenxin unveilingtemperatureinducedstructuraldomainsandmovementofoxygenvacanciesinsrtio3withgraphene AT duijnsteeelisabetha unveilingtemperatureinducedstructuraldomainsandmovementofoxygenvacanciesinsrtio3withgraphene AT sanyalbiplab unveilingtemperatureinducedstructuraldomainsandmovementofoxygenvacanciesinsrtio3withgraphene AT banerjeetamalika unveilingtemperatureinducedstructuraldomainsandmovementofoxygenvacanciesinsrtio3withgraphene |