Cargando…

A novel low-cost electrode for recording the local field potential of freely moving rat’s brain

Local field potentials (LFPs) are involved in almost all cognitive activities of animals. Several kinds of recording electrodes are used for recording LFPs in freely moving animals, including commercial and homemade electrodes. However, commercial recording electrodes are expensive, and their relati...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Xue-Feng, Gao, Yan, Zhang, Hui, Zhang, Yuan, Wang, Shao-Xia, Zhao, Yong-Qi, Wang, Yi-Zheng, Fan, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705991/
https://www.ncbi.nlm.nih.gov/pubmed/33312716
http://dx.doi.org/10.1515/tnsci-2020-0104
Descripción
Sumario:Local field potentials (LFPs) are involved in almost all cognitive activities of animals. Several kinds of recording electrodes are used for recording LFPs in freely moving animals, including commercial and homemade electrodes. However, commercial recording electrodes are expensive, and their relatively fixed size often causes a steric hindrance effect, especially when combining deep brain stimulation (DBS) with LFP recording, which may not always satisfy the aim of researchers. Currently, an increasing number of researchers are designing their own recording electrodes to lower research costs. Nevertheless, there is no simple universal method to produce low-cost recording electrodes with a specific size according to the target brain area. Thus, we developed a simple method for quickly producing low-cost multiple-channel recording electrodes. To inspect the effectiveness of our self-designed electrode, LFPs were recorded in a Parkinson’s disease (PD) rat model, and an electrical stimulation electrode was implanted into the subthalamic nucleus to verify the space-saving ability of the self-designed recording electrode. The results showed that <30 min was needed to prepare an electrode and that the electrode materials cost <5 dollars. Further investigations showed that our electrode successfully recorded the beta oscillations (12–40 Hz) in the PD rat model. Thus, this method will greatly reduce the cost of recording electrodes and save time for researchers. Additionally, the small size of the electrode will further facilitate DBS research.