Cargando…
Explainability for artificial intelligence in healthcare: a multidisciplinary perspective
BACKGROUND: Explainability is one of the most heavily debated topics when it comes to the application of artificial intelligence (AI) in healthcare. Even though AI-driven systems have been shown to outperform humans in certain analytical tasks, the lack of explainability continues to spark criticism...
Autores principales: | Amann, Julia, Blasimme, Alessandro, Vayena, Effy, Frey, Dietmar, Madai, Vince I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706019/ https://www.ncbi.nlm.nih.gov/pubmed/33256715 http://dx.doi.org/10.1186/s12911-020-01332-6 |
Ejemplares similares
-
Expectations and attitudes towards medical artificial intelligence: A qualitative study in the field of stroke
por: Amann, Julia, et al.
Publicado: (2023) -
Stuck in translation: Stakeholder perspectives on impediments to responsible digital health
por: Landers, Constantin, et al.
Publicado: (2023) -
Becoming partners, retaining autonomy: ethical considerations on the development of precision medicine
por: Blasimme, Alessandro, et al.
Publicado: (2016) -
Biomedical Big Data: New Models of Control Over Access, Use and Governance
por: Vayena, Effy, et al.
Publicado: (2017) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022)