Cargando…
Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study
BACKGROUND: Detecting coronary vulnerable plaques in vivo and assessing their vulnerability have been great challenges for clinicians and the research community. Intravascular ultrasound (IVUS) is commonly used in clinical practice for diagnosis and treatment decisions. However, due to IVUS limited...
Autores principales: | Lv, Rui, Maehara, Akiko, Matsumura, Mitsuaki, Wang, Liang, Wang, Qingyu, Zhang, Caining, Guo, Xiaoya, Samady, Habib, Giddens, Don P., Zheng, Jie, Mintz, Gary S., Tang, Dalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706023/ https://www.ncbi.nlm.nih.gov/pubmed/33256759 http://dx.doi.org/10.1186/s12938-020-00832-w |
Ejemplares similares
-
Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models
por: Lv, Rui, et al.
Publicado: (2021) -
Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study
por: Guo, Xiaoya, et al.
Publicado: (2021) -
Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions
por: Lv, Rui, et al.
Publicado: (2023) -
Predicting Coronary Stenosis Progression Using Plaque Fatigue From IVUS-Based Thin-Slice Models: A Machine Learning Random Forest Approach
por: Guo, Xiaoya, et al.
Publicado: (2022) -
Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid–structure interaction simulations
por: Wang, Qingyu, et al.
Publicado: (2021)