Cargando…
A general index for linear and nonlinear correlations for high dimensional genomic data
BACKGROUND: With the advance of high throughput sequencing, high-dimensional data are generated. Detecting dependence/correlation between these datasets is becoming one of most important issues in multi-dimensional data integration and co-expression network construction. RNA-sequencing data is widel...
Autores principales: | Yao, Zhihao, Zhang, Jing, Zou, Xiufen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706065/ https://www.ncbi.nlm.nih.gov/pubmed/33256599 http://dx.doi.org/10.1186/s12864-020-07246-x |
Ejemplares similares
-
Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data
por: Yoshida, Kosuke, et al.
Publicado: (2017) -
Discovering biclusters in gene expression data based on high-dimensional linear geometries
por: Gan, Xiangchao, et al.
Publicado: (2008) -
Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data
por: Xiong, Lie, et al.
Publicado: (2015) -
Generalized linear and nonlinear models for correlated data: theory and applications using SAS
por: Vonesh, Edward F
Publicado: (2012) -
A robust nonlinear low-dimensional manifold for single cell RNA-seq data
por: Verma, Archit, et al.
Publicado: (2020)