Cargando…
A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting
The yield of cereal crops such as sorghum (Sorghum bicolor L. Moench) depends on the distribution of crop-heads in varying branching arrangements. Therefore, counting the head number per unit area is critical for plant breeders to correlate with the genotypic variation in a specific breeding field....
Autores principales: | Ghosal, Sambuddha, Zheng, Bangyou, Chapman, Scott C., Potgieter, Andries B., Jordan, David R., Wang, Xuemin, Singh, Asheesh K., Singh, Arti, Hirafuji, Masayuki, Ninomiya, Seishi, Ganapathysubramanian, Baskar, Sarkar, Soumik, Guo, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706102/ https://www.ncbi.nlm.nih.gov/pubmed/33313521 http://dx.doi.org/10.34133/2019/1525874 |
Ejemplares similares
-
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018) -
A deep learning framework to discern and count microscopic nematode eggs
por: Akintayo, Adedotun, et al.
Publicado: (2018) -
Aerial Imagery Analysis – Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy
por: Guo, Wei, et al.
Publicado: (2018) -
Deep Multiview Image Fusion for Soybean Yield Estimation in Breeding Applications
por: Riera, Luis G., et al.
Publicado: (2021) -
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018)