Cargando…
Development of Optimized Phenomic Predictors for Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection in Soybean
The rate of advancement made in phenomic-assisted breeding methodologies has lagged those of genomic-assisted techniques, which is now a critical component of mainstream cultivar development pipelines. However, advancements made in phenotyping technologies have empowered plant scientists with afford...
Autores principales: | Parmley, Kyle, Nagasubramanian, Koushik, Sarkar, Soumik, Ganapathysubramanian, Baskar, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706298/ https://www.ncbi.nlm.nih.gov/pubmed/33313530 http://dx.doi.org/10.34133/2019/5809404 |
Ejemplares similares
-
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018) -
Machine Learning Approach for Prescriptive Plant Breeding
por: Parmley, Kyle A., et al.
Publicado: (2019) -
Plant disease identification using explainable 3D deep learning on hyperspectral images
por: Nagasubramanian, Koushik, et al.
Publicado: (2019) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017)