Cargando…

TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data

Machine learning-based plant phenotyping systems have enabled high-throughput, non-destructive measurements of plant traits. Tasks such as object detection, segmentation, and localization of plant traits in images taken in field conditions need the machine learning models to be developed on training...

Descripción completa

Detalles Bibliográficos
Autores principales: Shete, Snehal, Srinivasan, Srikant, Gonsalves, Timothy A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706316/
https://www.ncbi.nlm.nih.gov/pubmed/33313564
http://dx.doi.org/10.34133/2020/8309605
Descripción
Sumario:Machine learning-based plant phenotyping systems have enabled high-throughput, non-destructive measurements of plant traits. Tasks such as object detection, segmentation, and localization of plant traits in images taken in field conditions need the machine learning models to be developed on training datasets that contain plant traits amidst varying backgrounds and environmental conditions. However, the datasets available for phenotyping are typically limited in variety and mostly consist of lab-based images in controlled conditions. Here, we present a new method called TasselGAN, using a variant of a deep convolutional generative adversarial network, to synthetically generate images of maize tassels against sky backgrounds. Both foreground tassel images and background sky images are generated separately and merged together to form artificial field-based maize tassel data to aid the training of machine learning models, where there is a paucity of field-based data. The effectiveness of the proposed method is demonstrated using quantitative and perceptual qualitative experiments.