Cargando…
TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data
Machine learning-based plant phenotyping systems have enabled high-throughput, non-destructive measurements of plant traits. Tasks such as object detection, segmentation, and localization of plant traits in images taken in field conditions need the machine learning models to be developed on training...
Autores principales: | Shete, Snehal, Srinivasan, Srikant, Gonsalves, Timothy A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706316/ https://www.ncbi.nlm.nih.gov/pubmed/33313564 http://dx.doi.org/10.34133/2020/8309605 |
Ejemplares similares
-
Detection of the Progression of Anthesis in Field-Grown Maize Tassels: A Case Study
por: Mirnezami, Seyed Vahid, et al.
Publicado: (2021) -
TasselNet: counting maize tassels in the wild via local counts regression network
por: Lu, Hao, et al.
Publicado: (2017) -
Complex genetic architecture underlies maize tassel domestication
por: Xu, Guanghui, et al.
Publicado: (2017) -
Maize tassels detection: a benchmark of the state of the art
por: Zou, Hongwei, et al.
Publicado: (2020) -
TasselLFANet: a novel lightweight multi-branch feature aggregation neural network for high-throughput image-based maize tassels detection and counting
por: Yu, Zhenghong, et al.
Publicado: (2023)