Cargando…
High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks
Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, com...
Autores principales: | Liu, Liang, Lu, Hao, Li, Yanan, Cao, Zhiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706318/ https://www.ncbi.nlm.nih.gov/pubmed/33313541 http://dx.doi.org/10.34133/2020/1375957 |
Ejemplares similares
-
Tiller estimation method using deep neural networks
por: Kinose, Rikuya, et al.
Publicado: (2023) -
Identification of quantitative trait loci for tillering, root, and shoot biomass at the maximum tillering stage in rice
por: Barnaby, Jinyoung Y., et al.
Publicado: (2022) -
Short-Term Complete Submergence of Rice at the Tillering Stage Increases Yield
por: Zhang, Yajie, et al.
Publicado: (2015) -
DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice
por: Wang, Wenfei, et al.
Publicado: (2014) -
Primary-tiller panicle number is critical to achieving high grain yields in machine-transplanted hybrid rice
por: Huang, Min, et al.
Publicado: (2020)