Cargando…
Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review
Plant phenotyping has been recognized as a bottleneck for improving the efficiency of breeding programs, understanding plant-environment interactions, and managing agricultural systems. In the past five years, imaging approaches have shown great potential for high-throughput plant phenotyping, resul...
Autores principales: | Jiang, Yu, Li, Changying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706326/ https://www.ncbi.nlm.nih.gov/pubmed/33313554 http://dx.doi.org/10.34133/2020/4152816 |
Ejemplares similares
-
High-throughput image-based plant stand count estimation using convolutional neural networks
por: Khaki, Saeed, et al.
Publicado: (2022) -
High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning
por: Yang, Si, et al.
Publicado: (2021) -
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection
por: Xu, Rui, et al.
Publicado: (2018) -
A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots
por: Xu, Rui, et al.
Publicado: (2022) -
High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
por: Rajkomar, Alvin, et al.
Publicado: (2016)