Cargando…
Machine Learning-Based Presymptomatic Detection of Rice Sheath Blight Using Spectral Profiles
Early detection of plant diseases, prior to symptom development, can allow for targeted and more proactive disease management. The objective of this study was to evaluate the use of near-infrared (NIR) spectroscopy combined with machine learning for early detection of rice sheath blight (ShB), cause...
Autores principales: | Conrad, Anna O., Li, Wei, Lee, Da-Young, Wang, Guo-Liang, Rodriguez-Saona, Luis, Bonello, Pierluigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706329/ https://www.ncbi.nlm.nih.gov/pubmed/33313566 http://dx.doi.org/10.34133/2020/8954085 |
Ejemplares similares
-
Identification of Rice Sheath Blight through Spectral Responses Using Hyperspectral Images
por: Lin, Fenfang, et al.
Publicado: (2020) -
Molecular Detection Assays for Rapid Field-Detection of Rice Sheath Blight
por: Lin, Ying-Hong, et al.
Publicado: (2021) -
Progress in rice sheath blight resistance research
por: Chen, Jingsheng, et al.
Publicado: (2023) -
The evolution and pathogenic mechanisms of the rice sheath blight pathogen
por: Zheng, Aiping, et al.
Publicado: (2013) -
Mapping and validation of QTLs for rice sheath blight resistance
por: Taguchi-Shiobara, Fumio, et al.
Publicado: (2013)