Cargando…

DUSP11-mediated control of 5′-triphosphate RNA regulates RIG-I sensitivity

Deciphering the mechanisms that regulate the sensitivity of pathogen recognition receptors is imperative to understanding infection and inflammation. Here we demonstrate that the RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) acts on both host and virus-derived 5′-triphosphate RNAs rend...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Joon H., Burke, James M., Szymanik, Kayla H., Nepal, Upasana, Battenhouse, Anna, Lau, Justin T., Stark, Aaron, Lam, Victor, Sullivan, Christopher S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706711/
https://www.ncbi.nlm.nih.gov/pubmed/33184222
http://dx.doi.org/10.1101/gad.340604.120
Descripción
Sumario:Deciphering the mechanisms that regulate the sensitivity of pathogen recognition receptors is imperative to understanding infection and inflammation. Here we demonstrate that the RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) acts on both host and virus-derived 5′-triphosphate RNAs rendering them less active in inducing a RIG-I-mediated immune response. Reducing DUSP11 levels alters host triphosphate RNA packaged in extracellular vesicles and induces enhanced RIG-I activation in cells exposed to extracellular vesicles. Virus infection of cells lacking DUSP11 results in a higher proportion of triphosphorylated viral transcripts and attenuated virus replication, which is rescued by reducing RIG-I expression. Consistent with the activity of DUSP11 in the cellular RIG-I response, mice lacking DUSP11 display lower viral loads, greater sensitivity to triphosphorylated RNA, and a signature of enhanced interferon activity in select tissues. Our results reveal the importance of controlling 5′-triphosphate RNA levels to prevent aberrant RIG-I signaling and demonstrate DUSP11 as a key effector of this mechanism.