Cargando…
Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning
PURPOSE: To develop a deep neural network–based computational workflow for inline myocardial perfusion analysis that automatically delineates the myocardium, which improves the clinical workflow and offers a “one-click” solution. MATERIALS AND METHODS: In this retrospective study, consecutive adenos...
Autores principales: | Xue, Hui, Davies, Rhodri H., Brown, Louise A. E., Knott, Kristopher D., Kotecha, Tushar, Fontana, Marianna, Plein, Sven, Moon, James C., Kellman, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706884/ https://www.ncbi.nlm.nih.gov/pubmed/33330849 http://dx.doi.org/10.1148/ryai.2020200009 |
Ejemplares similares
-
The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence–Based Approach Using Perfusion Mapping
por: Knott, Kristopher D., et al.
Publicado: (2020) -
Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy
por: Camaioni, Claudia, et al.
Publicado: (2020) -
Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects
por: Brown, Louise A. E., et al.
Publicado: (2018) -
Inline quantitative myocardial perfusion flow mapping
por: Xue, Hui, et al.
Publicado: (2016) -
Automated inline extracellular volume (ECV) mapping
por: Spottiswoode, Bruce S, et al.
Publicado: (2015)