Cargando…

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Abulizi, Abudukadier, Vatner, Daniel F., Ye, Zhang, Wang, Yongliang, Camporez, Joao-Paulo, Zhang, Dongyan, Kahn, Mario, Lyu, Kun, Sirwi, Alaa, Cline, Gary W., Hussain, M. Mahmood, Aspichueta, Patricia, Samuel, Varman T., Shulman, Gerald I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707176/
https://www.ncbi.nlm.nih.gov/pubmed/32907986
http://dx.doi.org/10.1194/jlr.RA119000586
_version_ 1783617290168696832
author Abulizi, Abudukadier
Vatner, Daniel F.
Ye, Zhang
Wang, Yongliang
Camporez, Joao-Paulo
Zhang, Dongyan
Kahn, Mario
Lyu, Kun
Sirwi, Alaa
Cline, Gary W.
Hussain, M. Mahmood
Aspichueta, Patricia
Samuel, Varman T.
Shulman, Gerald I.
author_facet Abulizi, Abudukadier
Vatner, Daniel F.
Ye, Zhang
Wang, Yongliang
Camporez, Joao-Paulo
Zhang, Dongyan
Kahn, Mario
Lyu, Kun
Sirwi, Alaa
Cline, Gary W.
Hussain, M. Mahmood
Aspichueta, Patricia
Samuel, Varman T.
Shulman, Gerald I.
author_sort Abulizi, Abudukadier
collection PubMed
description Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp(−/−)) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp(−/−) mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp(−/−) mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp(−/−) mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp(−/−) mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp(−/−) mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp(−/−) mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp(−/−) mice.
format Online
Article
Text
id pubmed-7707176
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-77071762020-12-08 Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice Abulizi, Abudukadier Vatner, Daniel F. Ye, Zhang Wang, Yongliang Camporez, Joao-Paulo Zhang, Dongyan Kahn, Mario Lyu, Kun Sirwi, Alaa Cline, Gary W. Hussain, M. Mahmood Aspichueta, Patricia Samuel, Varman T. Shulman, Gerald I. J Lipid Res Research Articles Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp(−/−)) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp(−/−) mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp(−/−) mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp(−/−) mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp(−/−) mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp(−/−) mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp(−/−) mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp(−/−) mice. The American Society for Biochemistry and Molecular Biology 2020-12 2020-09-09 /pmc/articles/PMC7707176/ /pubmed/32907986 http://dx.doi.org/10.1194/jlr.RA119000586 Text en Copyright © 2020 Abulizi et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. http://creativecommons.org/licenses/by/4.0/ Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license.
spellingShingle Research Articles
Abulizi, Abudukadier
Vatner, Daniel F.
Ye, Zhang
Wang, Yongliang
Camporez, Joao-Paulo
Zhang, Dongyan
Kahn, Mario
Lyu, Kun
Sirwi, Alaa
Cline, Gary W.
Hussain, M. Mahmood
Aspichueta, Patricia
Samuel, Varman T.
Shulman, Gerald I.
Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
title Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
title_full Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
title_fullStr Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
title_full_unstemmed Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
title_short Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
title_sort membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in mttp knockout mice
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707176/
https://www.ncbi.nlm.nih.gov/pubmed/32907986
http://dx.doi.org/10.1194/jlr.RA119000586
work_keys_str_mv AT abuliziabudukadier membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT vatnerdanielf membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT yezhang membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT wangyongliang membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT camporezjoaopaulo membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT zhangdongyan membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT kahnmario membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT lyukun membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT sirwialaa membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT clinegaryw membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT hussainmmahmood membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT aspichuetapatricia membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT samuelvarmant membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice
AT shulmangeraldi membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice