Cargando…
Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707176/ https://www.ncbi.nlm.nih.gov/pubmed/32907986 http://dx.doi.org/10.1194/jlr.RA119000586 |
_version_ | 1783617290168696832 |
---|---|
author | Abulizi, Abudukadier Vatner, Daniel F. Ye, Zhang Wang, Yongliang Camporez, Joao-Paulo Zhang, Dongyan Kahn, Mario Lyu, Kun Sirwi, Alaa Cline, Gary W. Hussain, M. Mahmood Aspichueta, Patricia Samuel, Varman T. Shulman, Gerald I. |
author_facet | Abulizi, Abudukadier Vatner, Daniel F. Ye, Zhang Wang, Yongliang Camporez, Joao-Paulo Zhang, Dongyan Kahn, Mario Lyu, Kun Sirwi, Alaa Cline, Gary W. Hussain, M. Mahmood Aspichueta, Patricia Samuel, Varman T. Shulman, Gerald I. |
author_sort | Abulizi, Abudukadier |
collection | PubMed |
description | Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp(−/−)) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp(−/−) mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp(−/−) mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp(−/−) mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp(−/−) mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp(−/−) mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp(−/−) mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp(−/−) mice. |
format | Online Article Text |
id | pubmed-7707176 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-77071762020-12-08 Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice Abulizi, Abudukadier Vatner, Daniel F. Ye, Zhang Wang, Yongliang Camporez, Joao-Paulo Zhang, Dongyan Kahn, Mario Lyu, Kun Sirwi, Alaa Cline, Gary W. Hussain, M. Mahmood Aspichueta, Patricia Samuel, Varman T. Shulman, Gerald I. J Lipid Res Research Articles Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp(−/−)) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp(−/−) mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp(−/−) mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp(−/−) mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp(−/−) mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp(−/−) mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp(−/−) mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp(−/−) mice. The American Society for Biochemistry and Molecular Biology 2020-12 2020-09-09 /pmc/articles/PMC7707176/ /pubmed/32907986 http://dx.doi.org/10.1194/jlr.RA119000586 Text en Copyright © 2020 Abulizi et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. http://creativecommons.org/licenses/by/4.0/ Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. |
spellingShingle | Research Articles Abulizi, Abudukadier Vatner, Daniel F. Ye, Zhang Wang, Yongliang Camporez, Joao-Paulo Zhang, Dongyan Kahn, Mario Lyu, Kun Sirwi, Alaa Cline, Gary W. Hussain, M. Mahmood Aspichueta, Patricia Samuel, Varman T. Shulman, Gerald I. Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice |
title | Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice |
title_full | Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice |
title_fullStr | Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice |
title_full_unstemmed | Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice |
title_short | Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice |
title_sort | membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in mttp knockout mice |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707176/ https://www.ncbi.nlm.nih.gov/pubmed/32907986 http://dx.doi.org/10.1194/jlr.RA119000586 |
work_keys_str_mv | AT abuliziabudukadier membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT vatnerdanielf membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT yezhang membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT wangyongliang membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT camporezjoaopaulo membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT zhangdongyan membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT kahnmario membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT lyukun membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT sirwialaa membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT clinegaryw membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT hussainmmahmood membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT aspichuetapatricia membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT samuelvarmant membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice AT shulmangeraldi membraneboundsn12diacylglycerolsexplainthedissociationofhepaticinsulinresistancefromhepaticsteatosisinmttpknockoutmice |