Cargando…
Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge
Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707479/ https://www.ncbi.nlm.nih.gov/pubmed/33259486 http://dx.doi.org/10.1371/journal.pone.0237283 |
_version_ | 1783617357052116992 |
---|---|
author | Redhead, Sky Nieuwland, Jeroen Esteves, Sandra Lee, Do-Hoon Kim, Dae-Wi Mathias, Jordan Cha, Chang-Jun Toleman, Mark Dinsdale, Richard Guwy, Alan Hayhurst, Emma |
author_facet | Redhead, Sky Nieuwland, Jeroen Esteves, Sandra Lee, Do-Hoon Kim, Dae-Wi Mathias, Jordan Cha, Chang-Jun Toleman, Mark Dinsdale, Richard Guwy, Alan Hayhurst, Emma |
author_sort | Redhead, Sky |
collection | PubMed |
description | Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10–12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment. |
format | Online Article Text |
id | pubmed-7707479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77074792020-12-08 Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge Redhead, Sky Nieuwland, Jeroen Esteves, Sandra Lee, Do-Hoon Kim, Dae-Wi Mathias, Jordan Cha, Chang-Jun Toleman, Mark Dinsdale, Richard Guwy, Alan Hayhurst, Emma PLoS One Research Article Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10–12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment. Public Library of Science 2020-12-01 /pmc/articles/PMC7707479/ /pubmed/33259486 http://dx.doi.org/10.1371/journal.pone.0237283 Text en © 2020 Redhead et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Redhead, Sky Nieuwland, Jeroen Esteves, Sandra Lee, Do-Hoon Kim, Dae-Wi Mathias, Jordan Cha, Chang-Jun Toleman, Mark Dinsdale, Richard Guwy, Alan Hayhurst, Emma Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
title | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
title_full | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
title_fullStr | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
title_full_unstemmed | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
title_short | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
title_sort | fate of antibiotic resistant e. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707479/ https://www.ncbi.nlm.nih.gov/pubmed/33259486 http://dx.doi.org/10.1371/journal.pone.0237283 |
work_keys_str_mv | AT redheadsky fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT nieuwlandjeroen fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT estevessandra fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT leedohoon fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT kimdaewi fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT mathiasjordan fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT chachangjun fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT tolemanmark fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT dinsdalerichard fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT guwyalan fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge AT hayhurstemma fateofantibioticresistantecoliandantibioticresistancegenesduringfullscaleconventionalandadvancedanaerobicdigestionofsewagesludge |