Cargando…
Feature Extraction of Surface Electromyography Using Wavelet Weighted Permutation Entropy for Hand Movement Recognition
The feature extraction of surface electromyography (sEMG) signals has been an important aspect of myoelectric prosthesis control. To improve the practicability of myoelectric prosthetic hands, we proposed a feature extraction method for sEMG signals that uses wavelet weighted permutation entropy (WW...
Autores principales: | Liu, Xiaoyun, Xi, Xugang, Hua, Xian, Wang, Hujiao, Zhang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707938/ https://www.ncbi.nlm.nih.gov/pubmed/33299536 http://dx.doi.org/10.1155/2020/8824194 |
Ejemplares similares
-
Feature-Level Fusion of Surface Electromyography for Activity Monitoring
por: Xi, Xugang, et al.
Publicado: (2018) -
Towards Integration of Domain Knowledge-Guided Feature Engineering and Deep Feature Learning in Surface Electromyography-Based Hand Movement Recognition
por: Wei, Wentao, et al.
Publicado: (2021) -
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
Action Recognition of Lower Limbs Based on Surface Electromyography Weighted Feature Method
por: Wang, Jiashuai, et al.
Publicado: (2021) -
Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography
por: Jochumsen, Mads, et al.
Publicado: (2020)