Cargando…

Effects of a dual task and different levels of divided attention on motor-related cortical potential

[Purpose] The aim of this study was to investigate the effect of divided attention on motor-related cortical potential (MRCP) during dual task performance while the difficulty of the secondary task was altered. [Participants and Methods] Twenty-two right-handed healthy volunteers participated in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirano, Daisuke, Goto, Yoshinobu, Jinnai, Daisuke, Taniguchi, Takamichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708013/
https://www.ncbi.nlm.nih.gov/pubmed/33281285
http://dx.doi.org/10.1589/jpts.32.710
Descripción
Sumario:[Purpose] The aim of this study was to investigate the effect of divided attention on motor-related cortical potential (MRCP) during dual task performance while the difficulty of the secondary task was altered. [Participants and Methods] Twenty-two right-handed healthy volunteers participated in the study. MRCPs were recorded during two tasks, a single task (ST) and a simple (S-DT) or complex dual task (C-DT). The ST involved a self-paced tapping task in which the participants extended their right index finger. In the dual task, the participants performed the ST and a visual number counting task simultaneously. [Results] The amplitude and integral value of MRCP from electroencephalography electrode C3 was significantly higher in the S-DT than in the ST, whereas they were similar between the C-DT and the ST. Medium-load divided attention (i.e., S-DT) led to significantly more changes in the MRCP magnitude than did low-load divided attention (i.e., ST). However, the MRCP of high-load divided attention (i.e., C-DT) was similar to that of low-load divided attention. [Conclusion] These results suggest that MRCP reflects the function of or network between the supplementary motor area and the dorsolateral prefrontal cortex, and may serve as a marker for screening the capacity of individuals to perform dual tasks.