Cargando…
Deep Learning Methodology for Differentiating Glioma Recurrence From Radiation Necrosis Using Multimodal Magnetic Resonance Imaging: Algorithm Development and Validation
BACKGROUND: The radiological differential diagnosis between tumor recurrence and radiation-induced necrosis (ie, pseudoprogression) is of paramount importance in the management of glioma patients. OBJECTIVE: This research aims to develop a deep learning methodology for automated differentiation of t...
Autores principales: | Gao, Yang, Xiao, Xiong, Han, Bangcheng, Li, Guilin, Ning, Xiaolin, Wang, Defeng, Cai, Weidong, Kikinis, Ron, Berkovsky, Shlomo, Di Ieva, Antonio, Zhang, Liwei, Ji, Nan, Liu, Sidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708085/ https://www.ncbi.nlm.nih.gov/pubmed/33200991 http://dx.doi.org/10.2196/19805 |
Ejemplares similares
-
Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning
por: Liu, Sidong, et al.
Publicado: (2020) -
Multimodal neuroimaging computing: the workflows, methods, and platforms
por: Liu, Sidong, et al.
Publicado: (2015) -
Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders
por: Liu, Sidong, et al.
Publicado: (2015) -
Moving beyond algorithmic accuracy to improving user interaction with clinical AI
por: Berkovsky, Shlomo, et al.
Publicado: (2023) -
Cross-View Neuroimage Pattern Analysis in Alzheimer's Disease Staging
por: Liu, Sidong, et al.
Publicado: (2016)